Mechanisms of polyamine catabolism-induced acute pancreatitis.

نویسندگان

  • M T Hyvönen
  • M Merentie
  • A Uimari
  • T A Keinänen
  • J Jänne
  • L Alhonen
چکیده

Acute pancreatitis is an autodigestive disease, in which the pancreatic tissue is damaged by the digestive enzymes produced by the acinar cells. Among the tissues in the mammalian body, pancreas has the highest concentration of the natural polyamine, spermidine. We have found that pancreas is very sensitive to acute decreases in the concentrations of the higher polyamines, spermidine and spermine. Activation of polyamine catabolism in transgenic rats overexpressing SSAT (spermidine/spermine-N(1)-acetyltransferase) in the pancreas leads to rapid depletion of these polyamines and to acute necrotizing pancreatitis. Replacement of the natural polyamines with methylated polyamine analogues before the induction of acute pancreatitis prevents the development of the disease. As premature trypsinogen activation is a common, early event leading to tissue injury in acute pancreatitis in human and in experimental animal models, we studied its role in polyamine catabolism-induced pancreatitis. Cathepsin B, a lysosomal hydrolase mediating trypsinogen activation, was activated just 2 h after induction of SSAT. Pre-treatment of the rats with bismethylspermine prevented pancreatic cathepsin B activation. Analysis of tissue ultrastructure by transmission electron microscopy revealed early dilatation of rough endoplasmic reticulum, probable disturbance of zymogen packaging, appearance of autophagosomes and later disruption of intracellular membranes and organelles. Based on these results, we suggest that rapid eradication of polyamines from cellular structures leads to premature zymogen activation and autodigestion of acinar cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Association between remote organ injury and tissue polyamine homeostasis in acute experimental pancreatitis - treatment with a polyamine analogue bismethylspermine.

Experimental pancreatitis is associated with activation of polyamine catabolism. The polyamine analog bismethylspermine (Me(2)Spm) can ameliorate pancreatic injury. We investigated the roles of polyamine catabolism in remote organs during pancreatitis and explored the mechanism of polyamine catabolism by administering Me(2)Spm. Acute pancreatitis was induced by an infusion of 2 or 6% taurodeoxy...

متن کامل

Activation of polyamine catabolism in transgenic rats induces acute pancreatitis.

Polyamines are required for optimal growth and function of cells. Regulation of their cellular homeostasis is therefore tightly controlled. The key regulatory enzyme for polyamine catabolism is the spermidine/spermine N(1)-acetyltransferase (SSAT). Depletion of cellular polyamines has been associated with inhibition of growth and programmed cell death. To investigate the physiological function ...

متن کامل

A polyamine analogue prevents acute pancreatitis and restores early liver regeneration in transgenic rats with activated polyamine catabolism.

We recently generated a transgenic rat model for acute pancreatitis, which was apparently caused by a massive depletion of pancreatic polyamines spermidine and spermine due to inducible activation of their catabolism (Alhonen, L., Parkkinen, J. J., Keinänen, T., Sinervirta, R., Herzig, K. H., and Jänne, J. (2000) Proc. Natl. Acad. Sci. U. S. A. 97, 8290-8295). When subjected to partial hepatect...

متن کامل

Transgenic animals modelling polyamine metabolism-related diseases.

Cloning of genes related to polyamine metabolism has enabled the generation of genetically modified mice and rats overproducing or devoid of proteins encoded by these genes. Our first transgenic mice overexpressing ODC (ornithine decarboxylase) were generated in 1991 and, thereafter, most genes involved in polyamine metabolism have been used for overproduction of the respective proteins, either...

متن کامل

Role of hypusinated eukaryotic translation initiation factor 5A in polyamine depletion-induced cytostasis.

We have earlier shown that alpha-methylated spermidine and spermine analogues rescue cells from polyamine depletion-induced growth inhibition and maintain pancreatic integrity under severe polyamine deprivation. However, because alpha-methylspermidine can serve as a precursor of hypusine, an integral part of functional eukaryotic translation initiation factor 5A required for cell proliferation,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biochemical Society transactions

دوره 35 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2007